Search results
Results from the WOW.Com Content Network
The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This ...
To use Fourier analysis, data must be equally spaced. Different approaches have been developed for analyzing unequally spaced data, notably the least-squares spectral analysis (LSSA) methods that use a least squares fit of sinusoids to data samples, similar to Fourier analysis. [2] [3] Fourier analysis, the most used spectral method in science ...
An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines (or complex exponentials). The study of Fourier series typically occurs and is handled within the branch mathematics > mathematical analysis > Fourier analysis .
List of Fourier-related transforms; Fourier transform on finite groups; Fractional Fourier transform; Continuous Fourier transform; Fourier operator; Fourier inversion theorem; Sine and cosine transforms; Parseval's theorem; Paley–Wiener theorem; Projection-slice theorem; Frequency spectrum
Fourier series, a weighted sum of sinusoids having a common period, the result of Fourier analysis of a periodic function Fourier analysis , the description of functions as sums of sinusoids Fourier transform , the type of linear canonical transform that is the generalization of the Fourier series
Jean-Baptiste Joseph Fourier (/ ˈ f ʊr i eɪ,-i ər /; [1] French: [ʒɑ̃ batist ʒozɛf fuʁje]; 21 March 1768 – 16 May 1830) was a French mathematician and physicist born in Auxerre and best known for initiating the investigation of Fourier series, which eventually developed into Fourier analysis and harmonic analysis, and their applications to problems of heat transfer and vibrations.