Search results
Results from the WOW.Com Content Network
The 95 isprint codes 32 to 126 are known as the ASCII printable characters. Some older and today uncommon formats include BOO, BTOA , and USR encoding. Most of these encodings generate text containing only a subset of all ASCII printable characters: for example, the base64 encoding generates text that only contains upper case and lower case ...
ASCII was incorporated into the Unicode (1991) character set as the first 128 symbols, so the 7-bit ASCII characters have the same numeric codes in both sets. This allows UTF-8 to be backward compatible with 7-bit ASCII, as a UTF-8 file containing only ASCII characters is identical to an ASCII file containing the same sequence of characters.
In HTML and XML, a numeric character reference refers to a character by its Universal Character Set/Unicode code point, and uses the format: &#xhhhh;. or &#nnnn; where the x must be lowercase in XML documents, hhhh is the code point in hexadecimal form, and nnnn is the code point in decimal form.
A numeric character reference refers to a character by its Universal Character Set/Unicode code point, and a character entity reference refers to a character by a predefined name. A numeric character reference uses the format &#nnnn; or &#xhhhh; where nnnn is the code point in decimal form, and hhhh is the code point in hexadecimal form.
Percent-encoding a reserved character involves converting the character to its corresponding byte value in ASCII and then representing that value as a pair of hexadecimal digits (if there is a single hex digit, a leading zero is added).
Ascii85, also called Base85, is a form of binary-to-text encoding developed by Paul E. Rutter for the btoa utility. By using five ASCII characters to represent four bytes of binary data (making the encoded size 1 ⁄ 4 larger than the original, assuming eight bits per ASCII character), it is more efficient than uuencode or Base64, which use four characters to represent three bytes of data (1 ...
Each Unicode code point is encoded either as one or two 16-bit code units. Code points less than 2 16 ("in the BMP") are encoded with a single 16-bit code unit equal to the numerical value of the code point, as in the older UCS-2. Code points greater than or equal to 2 16 ("above the BMP") are encoded using two 16-bit code units.
This led to the idea that text in Chinese and other languages would take more space in UTF-8. However, text is only larger if there are more of these code points than 1-byte ASCII code points, and this rarely happens in the real-world documents due to spaces, newlines, digits, punctuation, English words, and (depending on document format) markup.