enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The Fourier series of a complex-valued P-periodic function (), integrable over the interval [,] on the real line, is defined as a trigonometric series of the form =, such that the Fourier coefficients are complex numbers defined by the integral [14] [15] = .

  3. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  4. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    Consider f an integrable function on the interval [0, 2π].For such an f the Fourier coefficients ^ are defined by the formula ^ = (),. It is common to describe the connection between f and its Fourier series by

  5. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    If () is a periodic function, with period , that has a convergent Fourier series, then: ^ = = (), where are the Fourier series coefficients of , and is the Dirac delta function. In other words, the Fourier transform is a Dirac comb function whose teeth are multiplied by the Fourier series coefficients.

  6. List of Fourier-related transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Fourier-related...

    These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients. When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued.

  7. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    In modern times, variants of the discrete Fourier transform were used by Alexis Clairaut in 1754 to compute an orbit, [16] which has been described as the first formula for the DFT, [17] and in 1759 by Joseph Louis Lagrange, in computing the coefficients of a trigonometric series for a vibrating string. [17]

  8. Discrete Fourier series - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_series

    The result of the series is also a function of the discrete variable, i.e. a discrete sequence. A Fourier series, by nature, has a discrete set of components with a discrete set of coefficients, also a discrete sequence. So a DFS is a representation of one sequence in terms of another sequence.

  9. Poisson summation formula - Wikipedia

    en.wikipedia.org/wiki/Poisson_summation_formula

    In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform.