Search results
Results from the WOW.Com Content Network
In structural dynamics, a moving load changes the point at which the load is applied over time. [ citation needed ] Examples include a vehicle that travels across a bridge [ citation needed ] and a train moving along a track.
If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid, size of the body, expressed in terms of its wetted area A, and; drag force F d.
The U* index represents the internal stiffness of every point within the structure. Consequently, the line connecting the highest U* values is the main load path. In other words, the main load path is the ridge line of the U* distribution (contour). [1] The U* index theory has been validated through two different physical experiments. [3]
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Mathematically vectors are elements of a vector space over a field, and for use in physics is usually defined with = or .Concretely, if the dimension = of is finite, then, after making a choice of basis, we can view such vector spaces as or .
Dynamic Amplification Factor (DAF) or Dynamic Increase Factor (DIF), is a dimensionless number which describes how many times the deflections or stresses should be multiplied to the deflections or stresses caused by the static loads when a dynamic load is applied on to a structure.
(This formula is used for example in describing the measuring principle of a dasymeter and of hydrostatic weighing.) Example: If you drop wood into water, buoyancy will keep it afloat. Example: A helium balloon in a moving car. When increasing speed or driving in a curve, the air moves in the opposite direction to the car's acceleration.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...