Search results
Results from the WOW.Com Content Network
The range and the maximum height of the projectile do not depend upon its mass. Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction. The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height ( y = 0 {\textstyle y=0} ).
d is the total horizontal distance travelled by the projectile. v is the velocity at which the projectile is launched; g is the gravitational acceleration—usually taken to be 9.81 m/s 2 (32 f/s 2) near the Earth's surface; θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
To find the angle giving the maximum height for a given speed calculate the derivative of the maximum height = / with respect to , that is = / which is zero when = / =. So the maximum height H m a x = v 2 2 g {\displaystyle H_{\mathrm {max} }={v^{2} \over 2g}} is obtained when the projectile is fired straight up.
Projectile path values are determined by both the sight height, or the distance of the line of sight above the bore centerline, and the range at which the sights are zeroed, which in turn determines the elevation angle. A projectile following a ballistic trajectory has both forward and vertical motion.
The Spall and Maryak approach applies when the shot data represent a mixture of different projectile characteristics (e.g., shots from multiple munitions types or from multiple locations directed at one target).
To calculate the velocity of the bullet given the horizontal swing, the following formula is used: [9] = where: is the velocity of the bullet, in feet per second; is the mass of the pendulum, in grains; is the mass of the bullet, in grains
The formula for escape velocity can be derived from the principle of conservation of energy. For the sake of simplicity, unless stated otherwise, we assume that an object will escape the gravitational field of a uniform spherical planet by moving away from it and that the only significant force acting on the moving object is the planet's gravity.