enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.

  3. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.

  5. List of integrals of hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    3.1 Integrals of hyperbolic tangent, cotangent, secant, cosecant functions 3.2 Integrals involving hyperbolic sine and cosine functions 3.3 Integrals involving hyperbolic and trigonometric functions

  6. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    For a definite integral, one must figure out how the bounds of integration change. For example, as x {\displaystyle x} goes from 0 {\displaystyle 0} to a / 2 , {\displaystyle a/2,} then sin ⁡ θ {\displaystyle \sin \theta } goes from 0 {\displaystyle 0} to 1 / 2 , {\displaystyle 1/2,} so θ {\displaystyle \theta } goes from 0 {\displaystyle 0 ...

  7. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    Leonhard Euler used it to evaluate the integral / (+ ⁡) in his 1768 integral calculus textbook, [3] and Adrien-Marie Legendre described the general method in 1817. [4] The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5]

  8. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin4 x − 1 8 sin2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  9. List of integrals of inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions. The ISO 80000-2 standard uses the prefix "ar-" rather than "arc-" for the inverse hyperbolic functions; we do that here.

  1. Related searches integration of cosecx cotx dx sin 1 2 cos inverse 4 5

    sin 1/2 degreesin(1/2) in radians
    inverse sin 1 2sin^-1(1/2)
    sin theta = 1/2sin pi/6