Search results
Results from the WOW.Com Content Network
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
UDM – Urban dispersion model is a Gaussian puff based model for predicting the dispersion of atmospheric pollutants in the range of 10m to 25 km throughout the urban environment. It is developed by the Defense Science and Technology Laboratory for the UK Ministry of Defence. It handles instantaneous, continuous, and pool releases, and can ...
In materials science, dispersion is the fraction of atoms of a material exposed to the surface. In general, D = N S / N , where D is the dispersion, N S is the number of surface atoms and N T is the total number of atoms of the material. [ 1 ]
The dispersion models vary depending on the mathematics used to develop the model, but all require the input of data that may include: Meteorological conditions such as wind speed and direction, the amount of atmospheric turbulence (as characterized by what is called the "stability class" ), the ambient air temperature, the height to the bottom ...
Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion: Sintering to produce solid materials (powder metallurgy, production of ceramics) Chemical reactor design; Catalyst design in chemical industry; Steel can be diffused (e.g., with carbon or nitrogen) to modify its ...
The laminar finite rate model computes the chemical source terms using the Arrhenius expressions and ignores turbulence fluctuations. This model provides with the exact solution for laminar flames but gives inaccurate solution for turbulent flames, in which turbulence highly affects the chemistry reaction rates, due to highly non-linear Arrhenius chemical kinetics.
Reaction–diffusion systems are mathematical models that correspond to several physical phenomena. The most common is the change in space and time of the concentration of one or more chemical substances: local chemical reactions in which the substances are transformed into each other, and diffusion which causes the substances to spread out ...
The QDO representation of atoms is the basis of the many body dispersion model [8] which is a popular way to account for electrostatic forces in molecular dynamics simulations. [9] This representation allows describing the processes of biological ion transport, [ 10 ] small drug molecules across hydrophobic cell membranes [ 11 ] and the ...