enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  3. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The existing 64- and 128-bit formats follow this rule, but the 16- and 32-bit formats have more exponent bits (5 and 8 respectively) than this formula would provide (3 and 7 respectively). As with IEEE 754-1985, the biased-exponent field is filled with all 1 bits to indicate either infinity (trailing significand field = 0) or a NaN (trailing ...

  4. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  5. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    Due to hardware typically not supporting 16-bit half-precision floats, neural networks often use the bfloat16 format, which is the single precision float format truncated to 16 bits. If the hardware has instructions to compute half-precision math, it is often faster than single or double precision.

  6. Floating point operations per second - Wikipedia

    en.wikipedia.org/wiki/Floating_point_operations...

    This standard defines the format for 32-bit numbers called single precision, as well as 64-bit numbers called double precision and longer numbers called extended precision (used for intermediate results). Floating-point representations can support a much wider range of values than fixed-point, with the ability to represent very small numbers ...

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    If, however, intermediate computations are all performed in extended precision (e.g. by setting line [1] to C99 long double), then up to full precision in the final double result can be maintained. [nb 13] Alternatively, a numerical analysis of the algorithm reveals that if the following non-obvious change to line [2] is made:

  8. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    The range of a double-double remains essentially the same as the double-precision format because the exponent has still 11 bits, [4] significantly lower than the 15-bit exponent of IEEE quadruple precision (a range of 1.8 × 10 308 for double-double versus 1.2 × 10 4932 for binary128).

  9. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.