Search results
Results from the WOW.Com Content Network
In fluid dynamics, a flow is considered incompressible if the divergence of the flow velocity is zero. However, related formulations can sometimes be used, depending on the flow system being modelled. Some versions are described below: Incompressible flow: =. This can assume either constant density (strict incompressible) or varying density flow.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape.
Finally, note that Stokes hypothesis is less restrictive that the one of incompressible flow. In fact, in the incompressible flow both the bulk viscosity term, and the shear viscosity term in the divergence of the flow velocity term disappears, while in the Stokes hypothesis the first term also disappears but the second one still remains.
The pressure in an incompressible flow acts like a Lagrange multiplier, being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no thermodynamic meaning. In fact, thermodynamics is typical of compressible flows and degenerates in incompressible flows.
The incompressible flow assumption typically holds well with all fluids at low Mach numbers (say up to about Mach 0.3), such as for modelling air winds at normal temperatures. [16] the incompressible Navier–Stokes equations are best visualized by dividing for the density: [17]
A vapor can exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the vapor pressure of the liquid (or solid). A supercritical fluid (SCF) is a gas whose temperature and pressure are above the critical temperature and critical pressure respectively. In this state, the distinction between liquid and gas disappears.
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible Navier–Stokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.