Search results
Results from the WOW.Com Content Network
Many models of communication include the idea that a sender encodes a message and uses a channel to transmit it to a receiver. Noise may distort the message along the way. The receiver then decodes the message and gives some form of feedback. [1] Models of communication simplify or represent the process of communication.
Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. [1] It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle .
Schramm's model of communication was published by Wilbur Schramm in 1954. It is one of the earliest interaction models of communication. [1] [2] [3] It was conceived as a response to and an improvement over earlier attempts in the form of linear transmission models, like the Shannon–Weaver model and Lasswell's model.
A model of communication is a simplified presentation that aims to give a basic explanation of the process by highlighting its most fundamental characteristics and components. [16] [8] [17] For example, James Watson and Anne Hill see Lasswell's model as a mere questioning device and not as a full model of communication. [10]
The SMCR model is usually described as a linear transmission model of communication. [4] [17] Its main focus is to identify the basic parts of communication and to show how their characteristics shape the communicative process. In this regard, Berlo understands his model as "a model of the ingredients of communication". [24]
The fictive model structure for this discussion has two confined quantized electronic and two hole subbands, e 1, e 2 and h 1, h 2, respectively. The linear absorption spectrum of such a structure shows the exciton resonances of the first (e1h1) and the second quantum well subbands (e 2 , h 2 ), as well as the absorption from the corresponding ...
A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).
FM is the only feasible method of recording the luminance ("black-and-white") component of video to (and retrieving video from) magnetic tape without distortion; video signals have a large range of frequency components – from a few hertz to several megahertz, too wide for equalizers to work with due to electronic noise below −60 dB.