Search results
Results from the WOW.Com Content Network
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...
Loop-carried dependencies and loop independent dependencies are determined by the relationships between statements in iterations of a loop. When a statement in one iteration of a loop depends in some way on a statement in a different iteration of the same loop, a loop-carried dependence exists. [1] [2] [3] However, if a statement in one ...
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
The iteration form of the Eiffel loop can also be used as a boolean expression when the keyword loop is replaced by either all (effecting universal quantification) or some (effecting existential quantification). This iteration is a boolean expression which is true if all items in my_list have counts greater than three:
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
In loop-carried dependence, statements in an iteration of a loop depend on statements in another iteration of the loop. Loop-Carried Dependence uses a modified version of the dependence notation seen earlier. Example of loop-carried dependence where S1[i] ->T S1[i + 1], where i indicates the current iteration, and i + 1 indicates the next ...
first checks whether x is less than 5, which it is, so then the {loop body} is entered, where the printf function is run and x is incremented by 1. After completing all the statements in the loop body, the condition, (x < 5), is checked again, and the loop is executed again, this process repeating until the variable x has the value 5.
A loop invariant is an assertion which must be true before the first loop iteration and remain true after each iteration. This implies that when a loop terminates correctly, both the exit condition and the loop invariant are satisfied. Loop invariants are used to monitor specific properties of a loop during successive iterations.