enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m-1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus

  3. Square–cube law - Wikipedia

    en.wikipedia.org/wiki/Square–cube_law

    Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law.

  4. Surface area - Wikipedia

    en.wikipedia.org/wiki/Surface_area

    The resulting surface area to volume ratio is therefore 3/r. Thus, if a cell has a radius of 1 μm, the SA:V ratio is 3; whereas if the radius of the cell is instead 10 μm, then the SA:V ratio becomes 0.3. With a cell radius of 100, SA:V ratio is 0.03. Thus, the surface area falls off steeply with increasing volume.

  5. Specific surface area - Wikipedia

    en.wikipedia.org/wiki/Specific_surface_area

    Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, [1] (with units of m 2 /kg or m 2 /g). Alternatively, it may be defined as SA per solid or bulk volume [ 2 ] [ 3 ] (units of m 2 /m 3 or m −1 ).

  6. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.

  7. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 (r) is the surface area of an (n ...

  8. Allen's rule - Wikipedia

    en.wikipedia.org/wiki/Allen's_rule

    A composite cube with a side of 2 has a volume of 8 units 3 but a surface area of only 24 units 2. A rectangular prism two cubes wide, one cube long and four cubes tall has the same volume, but a surface area of 28 units 2. Stacking them in a single column gives 34 units 2.

  9. Sauter mean diameter - Wikipedia

    en.wikipedia.org/wiki/Sauter_mean_diameter

    In fluid dynamics, Sauter mean diameter (SMD) is an average measure of particle size.It was originally developed by German scientist Josef Sauter in the late 1920s. [1] [2] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest.