Search results
Results from the WOW.Com Content Network
For example, an 8-bit-byte-addressable machine with a 20-bit address bus (e.g. Intel 8086) can address 2 20 (1,048,576) memory locations, or one MiB of memory, while a 32-bit bus (e.g. Intel 80386) addresses 2 32 (4,294,967,296) locations, or a 4 GiB address space. In contrast, a 36-bit word-addressable machine with an 18-bit address bus ...
A 64-bit processor performs best with 64-bit software. A 64-bit processor may have backward compatibility, allowing it to run 32-bit application software for the 32-bit version of its instruction set, and may also support running 32-bit operating systems for the 32-bit version of its instruction set. A 32-bit processor is incompatible with 64 ...
A system bus is a single computer bus that connects the major components of a computer system, combining the functions of a data bus to carry information, an address bus to determine where it should be sent or read from, and a control bus to determine its operation. The technique was developed to reduce costs and improve modularity, and ...
The simplest system bus has completely separate input data lines, output data lines, and address lines. To reduce cost, most microcomputers have a bidirectional data bus, re-using the same wires for input and output at different times. [20] Some processors use a dedicated wire for each bit of the address bus, data bus, and the control bus.
One of the major improvements the PCI Local Bus had over other I/O architectures was its configuration mechanism. In addition to the normal memory-mapped and I/O port spaces, each device function on the bus has a configuration space, which is 256 bytes long, addressable by knowing the eight-bit PCI bus, five-bit device, and three-bit function numbers for the device (commonly referred to as the ...
In computer architecture, a control bus is part of the system bus and is used by CPUs for communicating with other devices within the computer. While the address bus carries the information about the device with which the CPU is communicating and the data bus carries the actual data being processed, the control bus carries commands from the CPU and returns status signals from the devices.
Memory-mapped I/O is preferred in IA-32 and x86-64 based architectures because the instructions that perform port-based I/O are limited to one register: EAX, AX, and AL are the only registers that data can be moved into or out of, and either a byte-sized immediate value in the instruction or a value in register DX determines which port is the source or destination port of the transfer.
The new Double Address Cycle (DAC) mechanism, if implemented on both the PCI bus and the device itself, [7] enables 64-bit DMA addressing. Otherwise, the operating system would need to work around the problem by either using costly double buffers (DOS/Windows nomenclature) also known as bounce buffers ( FreeBSD /Linux), or it could use an IOMMU ...