Search results
Results from the WOW.Com Content Network
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.
Harcourt's theorem is a formula in geometry for the area of a triangle, as a function of its side lengths and the perpendicular distances of its vertices from an arbitrary line tangent to its incircle. [1] The theorem is named after J. Harcourt, an Irish professor. [2]
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
In the following definitions, the hypotenuse is the side opposite to the 90-degree angle in a right triangle; it is the longest side of the triangle and one of the two sides adjacent to angle A. The adjacent leg is the other side that is adjacent to angle A. The opposite side is the side that is opposite to angle A.
The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.
The octant of a sphere is a spherical triangle with three right angles. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles.
These rational numbers are the tangents of the individual quarter angles, using the formula for the tangent of the difference of angles. Rational side lengths for the polygon circumscribed by the unit circle are thus obtained as s k = 4q k / (1 + q k 2). The rational area is A = ∑ k 2q k (1 − q k 2) / (1 + q k 2) 2. These can be made into ...
A triangle with sides <, semiperimeter = (+ +), area, altitude opposite the longest side, circumradius, inradius, exradii,, tangent to ,, respectively, and medians,, is a right triangle if and only if any one of the statements in the following six categories is true. Each of them is thus also a property of any right triangle.