Search results
Results from the WOW.Com Content Network
In continuum mechanics, viscous damping is a formulation of the damping phenomena, in which the source of damping force is modeled as a function of the volume, shape, and velocity of an object traversing through a real fluid with viscosity. [1] Typical examples of viscous damping in mechanical systems include: Fluid films between surfaces
[1] [2] Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. [3] Examples of damping include viscous damping in a fluid (see viscous drag), surface friction, radiation, [1] resistance in electronic oscillators, and absorption and scattering of light in optical oscillators.
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return ...
Diagram of a Maxwell material. The Maxwell model is represented by a purely viscous damper and a purely elastic spring connected in series, [4] as shown in the diagram. If, instead, we connect these two elements in parallel, [4] we get the generalized model of a solid Kelvin–Voigt material.
Their damping coefficients will usually be specified by torque per angular velocity. One can distinguish two kinds of viscous rotary dashpots: [3] Vane dashpots which have a limited angular range but provide a significant damping torque. The damping force is the result of one or multiple vanes moving through a viscous fluid and letting it flow ...
The Kelvin–Voigt model, also called the Voigt model, is represented by a purely viscous damper and purely elastic spring connected in parallel as shown in the picture. If, instead, we connect these two elements in series we get a model of a Maxwell material .
= is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:
When a "viscous" damper is added to the model this outputs a force that is proportional to the velocity of the mass. The damping is called viscous because it models the effects of a fluid within an object. The proportionality constant c is called the damping coefficient and has units of Force over velocity (lbf⋅s/in or N⋅s/m).