enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [3] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...

  4. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}

  5. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    The extremely slow convergence of the arctangent series for | | makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed ⁠ 1 4 π {\displaystyle {\tfrac {1}{4}}\pi } ⁠ as a sum of arctangents of smaller values, eventually resulting in a variety of ...

  6. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  7. 'As foretold in the prophecy': Elon Musk and internet react ...

    www.aol.com/foretold-prophecy-elon-musk-internet...

    Tesla's 70% year-to-date share price surge comes after Musk, who is the founder of SpaceX and owner of X, was named the co-leader of the Department of Government Efficiency, or D.O.G.E.

  8. Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:

  9. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    Where n! denotes the factorial of n, and R n (x) is a remainder term, denoting the difference between the Taylor polynomial of degree n and the original function. Following is the process to derive an approximation for the first derivative of the function f by first truncating the Taylor polynomial plus remainder: f ( x 0 + h ) = f ( x 0 ) + f ...