Search results
Results from the WOW.Com Content Network
A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. Chloroplasts have a high concentration of chlorophyll pigments which capture the energy from sunlight and convert it to chemical energy and release oxygen.
Cell damage (also known as cell injury) is a variety of changes of stress that a cell suffers due to external as well as internal environmental changes. Amongst other causes, this can be due to physical, chemical, infectious, biological, nutritional or immunological factors.
Between dinner parties, cookie exchanges and festive cocktails, most people report eating and drinking more than usual during the holidays, gaining on average 1 to 2 pounds of body weight.
Chlororespiration basics. Chlororespiration is a respiratory process that takes place within plants. Inside plant cells there is an organelle called the chloroplast which is surrounded by the thylakoid membrane.
Chloroplasts: found in green algae (plants) and other organisms that derived their genomes from green algae. Muroplasts: also known as cyanoplasts or cyanelles, the plastids of glaucophyte algae are similar to plant chloroplasts, excepting they have a peptidoglycan cell wall that is similar to that of bacteria.
Like mitochondria, chloroplasts have a double-membrane envelope, called the chloroplast envelope, but unlike mitochondria, chloroplasts also have internal membrane structures called thylakoids. Furthermore, one or two additional membranes may enclose chloroplasts in organisms that underwent secondary endosymbiosis , such as the euglenids and ...
The relative proportion of immature chloroplasts present in the preparations may explain these observations. The metabolic state of the chloroplast changes considerably between night and day. During the day, the chloroplast is actively harvesting the energy of light and converting it into chemical energy.
If too much copper is ingested, an excess condition can result. Both of these conditions, deficiency and excess, can lead to tissue injury and disease. However, due to homeostatic regulation, the human body is capable of balancing a wide range of copper intakes for the needs of healthy individuals. [45]