Search results
Results from the WOW.Com Content Network
EEG-fMRI (short for EEG-correlated fMRI or electroencephalography-correlated functional magnetic resonance imaging) is a multimodal neuroimaging technique whereby EEG and fMRI data are recorded synchronously for the study of electrical brain activity in correlation with haemodynamic changes in brain during the electrical activity, be it normal function or associated with disorders.
In single-voxel fMRS the selection of the volume of interest (VOI) is often done by running a functional magnetic resonance imaging (fMRI) study prior to fMRS to localize the brain region activated by the task. Single-voxel spectroscopy requires shorter acquisition times; therefore it is more suitable for fMRS studies where high temporal ...
The electrocorticographic signal is processed in the same manner as digital scalp EEG (above), with a couple of caveats. ECoG is typically recorded at higher sampling rates than scalp EEG because of the requirements of Nyquist theorem – the subdural signal is composed of a higher predominance of higher frequency components. Also, many of the ...
Functional magnetic resonance imaging or functional MRI (fMRI) measures brain activity by detecting changes associated with blood flow. [1] [2] This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases. [3]
Whereas scalp EEG is sensitive to both tangential and radial components of a current source in a spherical volume conductor, MEG detects only its tangential components. Scalp EEG can, therefore, detect activity both in the sulci and at the top of the cortical gyri, whereas MEG is most sensitive to activity originating in sulci.
Functional MRI (fMRI) Blood-oxygen-level dependent imaging: BOLD: Changes in oxygen saturation-dependent magnetism of hemoglobin reflects tissue activity. [26] Localizing brain activity from performing an assigned task (e.g. talking, moving fingers) before surgery, also used in research of cognition. [27] Magnetic resonance angiography (MRA ...
The C1 and P1 (also called the P100) are two human scalp-recorded event-related brain potential (event-related potential (ERP)) components, collected by means of a technique called electroencephalography (EEG). The C1 is named so because it was the first component in a series of components found to respond to visual stimuli when it was first ...
The EEG proved to be a useful source in recording brain activity over the ensuing decades. However, it tended to be very difficult to assess the highly specific neural process that are the focus of cognitive neuroscience because using pure EEG data made it difficult to isolate individual neurocognitive processes. Event-related potentials (ERPs ...