Search results
Results from the WOW.Com Content Network
The elasticity at a point is the limit of the arc elasticity between two points as the separation between those two points approaches zero. The concept of elasticity is widely used in economics and metabolic control analysis (MCA); see elasticity (economics) and elasticity coefficient respectively for details.
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...
Elasticity (economics), a general term for a ratio of change. For more specific economic forms of elasticity, see: Cross elasticity of demand; Elasticity of substitution; Frisch elasticity of labor supply; Income elasticity of demand; Output elasticity; Price elasticity of demand; Price elasticity of supply; Yield elasticity of bond value
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.
Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886. [1] In the continuum description of a solid body we imagine the body to be composed of a set of infinitesimal volumes or material points.
The stiffness of a structure is of principal importance in many engineering applications, so the modulus of elasticity is often one of the primary properties considered when selecting a material. A high modulus of elasticity is sought when deflection is undesirable, while a low modulus of elasticity is required when flexibility is needed.
The simple thermodynamic formula: = , where dU is an infinitesimal change in recoverable internal energy U, P is the uniform pressure (a force per unit area) applied to the material sample of interest, and dV is the infinitesimal change in volume that corresponds to the change in internal energy.
Given the definition of the elasticity coefficient in terms of a partial derivative, it is possible, for example, to determine the elasticity of an arbitrary rate law by differentiating the rate law by the independent variable and scaling. For example, the elasticity coefficient for a mass-action rate law such as: