enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Function f : [Z] 3 → [Z] 6 given by [k] 3 ↦ [3k] 6 is a semigroup homomorphism, since [3k ⋅ 3l] 6 = [9kl] 6 = [3kl] 6. However, f([1] 3) = [3] 6 ≠ [1] 6, so a monoid homomorphism is a semigroup homomorphism between monoids that maps the identity of the first monoid to the identity of the second monoid and the latter condition cannot be ...

  3. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"

  4. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  5. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Monoidal categories can be seen as a generalization of these and other examples. Every ( small ) monoidal category may also be viewed as a " categorification " of an underlying monoid , namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product.

  6. Semigroup - Wikipedia

    en.wikipedia.org/wiki/Semigroup

    [2] [3] The notation S 1 denotes a monoid obtained from S by adjoining an identity if necessary (S 1 = S for a monoid). [3] Similarly, every magma has at most one absorbing element, which in semigroup theory is called a zero. Analogous to the above construction, for every semigroup S, one can define S 0, a semigroup with 0 that embeds S.

  7. Trace monoid - Wikipedia

    en.wikipedia.org/wiki/Trace_monoid

    Trace monoids are commonly used to model concurrent computation, forming the foundation for process calculi. They are the object of study in trace theory . The utility of trace monoids comes from the fact that they are isomorphic to the monoid of dependency graphs ; thus allowing algebraic techniques to be applied to graphs , and vice versa.

  8. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  9. Transformation semigroup - Wikipedia

    en.wikipedia.org/wiki/Transformation_semigroup

    Two examples of useful transformation monoids given by an action of left multiplication are the functional variation of the difference list data structure, and the monadic Codensity transformation (a Cayley representation of a monad, which is a monoid in a particular monoidal functor category).