Search results
Results from the WOW.Com Content Network
Primary: The chorionic villi are at first small and non-vascular. 13–15 days: trophoblast only [1] Secondary: The villi increase in size and ramify, while the mesoderm grows into them. 16–21 days: trophoblast and mesoderm [1] Tertiary: Branches of the umbilical artery and umbilical vein grow into the mesoderm, and in this way the chorionic ...
At the end of the second week of development, some cells of the trophoblast penetrate and form rounded columns into the syncytiotrophoblast. These columns are known as primary villi. At the same time, other migrating cells form into the exocoelomic cavity a new cavity named the secondary or definitive yolk sac, smaller than the primitive yolk sac.
An undifferentiated cytotrophoblastic stem cell will differentiate into a villous cytotrophoblast, which is what constitutes primary chorionic villi, and will eventually coalesce into villous syncytiotrophoblast. The formation of syncytiotrophoblast from cytotrophoblast is a terminal differentiation step of trophoblastic cells.
In the placenta, the intervillous space is the space between chorionic villi, and contains maternal blood.. The trophoblast, which is a collection of cells that invades the maternal endometrium to gain access to nutrition for the fetus, proliferates rapidly and forms a network of branching processes which cover the entire embryo and invade and destroy the maternal tissues.
Rarely, the yolk sac can be seen in the afterbirth as a small, somewhat oval-shaped body whose diameter varies from 1 mm to 5 mm; it is situated between the amnion and the chorion and may lie on or at a varying distance from the placenta. There is no clinical significance to a residual external yolk sac.
There are two types of ossification centers – primary and secondary. A primary ossification center is the first area of a bone to start ossifying. It usually appears during prenatal development in the central part of each developing bone. In long bones the primary centers occur in the diaphysis/shaft and in irregular bones the primary centers ...
The (a) primary, (b) secondary, (c) tertiary, and (d) quaternary structures of a hemoglobin protein. Macromolecules are large molecules made up of smaller subunits or monomers. [36] Monomers include sugars, amino acids, and nucleotides. [37] Carbohydrates include monomers and polymers of sugars. [38]
The brain is the central organ of the human nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activities of the body, processing, integrating, and coordinating the information it receives from the sensory nervous system ...