enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical assumption - Wikipedia

    en.wikipedia.org/wiki/Statistical_assumption

    In the design-based approach, the model is taken to be known, and one of the goals is to ensure that the sample data are selected randomly enough for inference. Statistical assumptions can be put into two classes, depending upon which approach to inference is used. Model-based assumptions. These include the following three types:

  3. Analysis of competing hypotheses - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_competing...

    Should an assumption or necessary state be negated, hypotheses depending on it are rejected. This is a form of root cause analysis. According to social constructivist critics, ACH also fails to stress sufficiently (or to address as a method) the problematic nature of the initial formation of the hypotheses used to create its grid.

  4. Statistical model - Wikipedia

    en.wikipedia.org/wiki/Statistical_model

    Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows us to calculate the probability of any event. As an example, consider a pair of ordinary six-sided dice. We will study two different statistical assumptions about the dice.

  5. Statistical inference - Wikipedia

    en.wikipedia.org/wiki/Statistical_inference

    Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.

  6. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    The bootstrap is very versatile as it is distribution-free and it does not rely on restrictive parametric assumptions, but rather on empirical approximate methods with asymptotic guarantees. Traditional parametric hypothesis tests are more computationally efficient but make stronger structural assumptions.

  7. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise. The statement being tested in a test of statistical significance is called the null hypothesis.

  8. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    A cheaper method would be to use a stratified sample with urban and rural strata. The rural sample could be under-represented in the sample, but weighted up appropriately in the analysis to compensate. More generally, data should usually be weighted if the sample design does not give each individual an equal chance of being selected.

  9. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...