Search results
Results from the WOW.Com Content Network
Ionic compounds conduct electricity when molten or in solution, typically not when solid. Ionic compounds generally have a high melting point, depending on the charge of the ions they consist of. The higher the charges the stronger the cohesive forces and the higher the melting point.
Inorganic compounds with simple ions typically have small ions, and thus have high melting points, so are solids at room temperature. Some substances with larger ions, however, have a melting point below or near room temperature (often defined as up to 100 °C), and are termed ionic liquids. [64]
Many cage-like compounds like adamantane and cubane with high symmetry have relatively high melting points. A high melting point results from a high heat of fusion, a low entropy of fusion, or a combination of both. In highly symmetrical molecules the crystal phase is densely packed with many efficient intermolecular interactions resulting in a ...
Low-temperature ionic liquids can be compared to ionic solutions, liquids that contain both ions and neutral molecules, and in particular to the so-called deep eutectic solvents, mixtures of ionic and non-ionic solid substances which have much lower melting points than the pure compounds. Certain mixtures of nitrate salts can have melting ...
Ionic solids are typically of intermediate strength and extremely brittle. Melting points are typically moderately high, but some combinations of molecular cations and anions yield an ionic liquid with a freezing point below room temperature. Vapour pressures in all instances are extraordinarily low; this is a consequence of the large energy ...
Metal cations with a high oxidation state tend to undergo hydrolysis instead, e.g. ferric chloride, aluminium chloride, and titanium tetrachloride. [1] Discrete metal halides have lower melting and boiling points. For example, titanium tetrachloride melts at −25 °C and boils at 135 °C, making it a liquid at room temperature.
When it is converted to the covalent red phosphorus, the density goes to 2.2–2.4 g/cm 3 and melting point to 590 °C, and when white phosphorus is transformed into the (also covalent) black phosphorus, the density becomes 2.69–3.8 g/cm 3 and melting temperature ~200 °C. Both red and black phosphorus forms are significantly harder than ...
These compounds dissolve in polar solvents to give ionic solutions that contain highly solvated anions and cations. Alkali halides dissolve large amounts of the corresponding alkali metal: caesium is completely miscible at all temperatures above the melting point.