enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  3. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  4. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    Another way is the so-called adaptive standard GD or SGD, some representatives are Adam, Adadelta, RMSProp and so on, see the article on Stochastic gradient descent. In adaptive standard GD or SGD, learning rates are allowed to vary at each iterate step n, but in a different manner from Backtracking line search for gradient descent.

  5. Free energy principle - Wikipedia

    en.wikipedia.org/wiki/Free_energy_principle

    The associated process theory of neuronal dynamics is based on minimising free energy through gradient descent. This corresponds to generalised Bayesian filtering (where ~ denotes a variable in generalised coordinates of motion and is a derivative matrix operator): [39]

  6. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  7. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Choosing a proportionality constant and eliminating the minus sign to enable us to move the weight in the negative direction of the gradient to minimize error, we arrive at our target equation: = ′ ().

  8. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    Stochastic - Boltzmann Machine, Cauchy Machine It is to be noted that though these learning rules might appear to be based on similar ideas, they do have subtle differences, as they are a generalisation or application over the previous rule, and hence it makes sense to study them separately based on their origins and intents.

  9. Subgradient method - Wikipedia

    en.wikipedia.org/wiki/Subgradient_method

    When the objective function is differentiable, sub-gradient methods for unconstrained problems use the same search direction as the method of gradient descent. Subgradient methods are slower than Newton's method when applied to minimize twice continuously differentiable convex functions.