Search results
Results from the WOW.Com Content Network
The cochlea is a portion of the inner ear that looks like a snail shell (cochlea is Greek for snail). [5] The cochlea receives sound in the form of vibrations, which cause the stereocilia to move. The stereocilia then convert these vibrations into nerve impulses which are taken up to the brain to be interpreted.
As acoustic sensors in mammals, stereocilia are lined up in the organ of Corti within the cochlea of the inner ear. In hearing, stereocilia transform the mechanical energy of sound waves into electrical signals for the hair cells, which ultimately leads to an excitation of the auditory nerve .
The stereocilia number from fifty to a hundred in each cell while being tightly packed together [2] and decrease in size the further away they are located from the kinocilium. [ 3 ] Mammalian cochlear hair cells are of two anatomically and functionally distinct types, known as outer, and inner hair cells.
The height of hair bundles increases from base to apex and the number of stereocilia decreases (i.e. hair cells located at the base of the cochlea contain more stereo cilia than those located at the apex). [14] Furthermore, in the tip-link complex of cochlear hair cells, tonotopy is associated with gradients of intrinsic mechanical properties. [15]
The cochlea of the inner ear, a marvel of physiological engineering, acts as both a frequency analyzer and nonlinear acoustic amplifier. [2] The cochlea has over 32,000 hair cells . Outer hair cells primarily provide amplification of traveling waves that are induced by sound energy, while inner hair cells detect the motion of those waves and ...
The stereocilia atop the IHCs move with this fluid displacement and in response their cation, or positive ion selective, channels are pulled open by cadherin structures called tip links that connect adjacent stereocilia. [9] The organ of Corti, surrounded in potassium-rich fluid endolymph, lies on the basilar membrane at the base of the scala ...
Outer hair cells have stereocilia projecting towards the tectorial membrane, which sits above the organ of Corti. Stereocilia respond to movement of the tectorial membrane when a sound causes vibration through the cochlea. When this occurs, the stereocilia separate and a channel is formed that allows chemical processes to take place.
Stereocilia (or stereovilli or villi) are non-motile apical cell modifications. They are distinct from cilia and microvilli , but are closely related to microvilli. They form single "finger-like" projections that may be branched, with normal cell membrane characteristics.