Ad
related to: linear algebra transformation matrix formula listeducator.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
If is a linear transformation mapping to and is a column vector with entries, then = for some matrix , called the transformation matrix of . [ citation needed ] Note that A {\displaystyle A} has m {\displaystyle m} rows and n {\displaystyle n} columns, whereas the transformation T {\displaystyle T} is from R n {\displaystyle \mathbb {R} ^{n ...
The matrix and the vector can be represented with respect to a right-handed or left-handed coordinate system. Throughout the article, we assumed a right-handed orientation, unless otherwise specified. Vectors or forms The vector space has a dual space of linear forms, and the matrix can act on either vectors or forms.
A specific application of linear maps is for geometric transformations, such as those performed in computer graphics, where the translation, rotation and scaling of 2D or 3D objects is performed by the use of a transformation matrix. Linear mappings also are used as a mechanism for describing change: for example in calculus correspond to ...
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
With respect to general linear maps, linear endomorphisms and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other part of mathematics.
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, vec ( A B C ) = ( C T ⊗ A ) vec ( B ) {\displaystyle \operatorname {vec} (ABC)=(C^{\mathrm {T} }\otimes A)\operatorname {vec} (B)} for matrices A , B , and C of dimensions k ...
As a linear transformation, every orthogonal matrix with determinant +1 is a pure rotation without reflection, i.e., the transformation preserves the orientation of the transformed structure, while every orthogonal matrix with determinant -1 reverses the orientation, i.e., is a composition of a pure reflection and a (possibly null) rotation.
A transformation A ↦ P −1 AP is called a similarity transformation or conjugation of the matrix A. In the general linear group , similarity is therefore the same as conjugacy , and similar matrices are also called conjugate ; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than ...
Ad
related to: linear algebra transformation matrix formula listeducator.com has been visited by 10K+ users in the past month