Search results
Results from the WOW.Com Content Network
For example, density (mass divided by volume, in units of kg/m 3) is said to be a "quotient", whereas mass fraction (mass divided by mass, in kg/kg or in percent) is a "ratio". [8] Specific quantities are intensive quantities resulting from the quotient of a physical quantity by mass, volume, or other measures of the system "size". [3]
If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since = +.
In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense ...
For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4 , or 20 / 5 = 4 . [ 2 ] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient.
For example, quotient set, quotient group, quotient category, etc. 3. In number theory and field theory, / denotes a field extension, where F is an extension field of the field E. 4. In probability theory, denotes a conditional probability. For example, (/) denotes the probability of A, given that B occurs.
In mathematics a rational number is a number that can be represented by a fraction of the form a / b , where a and b are integers and b is not zero; the set of all rational numbers is commonly represented by the symbol Q or , which stands for quotient.
In linear algebra, a quotient space is a vector space formed by taking a quotient group, where the quotient homomorphism is a linear map. By extension, in abstract algebra, the term quotient space may be used for quotient modules, quotient rings, quotient groups, or any quotient algebra. However, the use of the term for the more general cases ...
Another family of examples of infinite simple groups is given by (), where is an infinite field and . It is much more difficult to construct finitely generated infinite simple groups. The first existence result is non-explicit; it is due to Graham Higman and consists of simple quotients of the Higman group . [ 5 ]