enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.

  3. Dormancy - Wikipedia

    en.wikipedia.org/wiki/Dormancy

    Predictive dormancy occurs when an organism enters a dormant phase before the onset of adverse conditions. For example, photoperiod and decreasing temperature are used by many plants to predict the onset of winter. Consequential dormancy occurs when organisms enter a dormant phase after adverse conditions have arisen. This is commonly found in ...

  4. Latent space - Wikipedia

    en.wikipedia.org/wiki/Latent_space

    A latent space, also known as a latent feature space or embedding space, is an embedding of a set of items within a manifold in which items resembling each other are positioned closer to one another. Position within the latent space can be viewed as being defined by a set of latent variables that emerge from the resemblances from the objects.

  5. Variational autoencoder - Wikipedia

    en.wikipedia.org/wiki/Variational_autoencoder

    As it maps from a known input space to the low-dimensional latent space, it is called the encoder. The decoder is the second neural network of this model. It is a function that maps from the latent space to the input space, e.g. as the means of the noise distribution.

  6. Latent and observable variables - Wikipedia

    en.wikipedia.org/wiki/Latent_and_observable...

    Other latent variables correspond to abstract concepts, like categories, behavioral or mental states, or data structures. The terms hypothetical variables or hypothetical constructs may be used in these situations. The use of latent variables can serve to reduce the dimensionality of data. Many observable variables can be aggregated in a model ...

  7. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    One of the questions that arises in a decision tree algorithm is the optimal size of the final tree. A tree that is too large risks overfitting the training data and poorly generalizing to new samples. A small tree might not capture important structural information about the sample space.

  8. Latent class model - Wikipedia

    en.wikipedia.org/wiki/Latent_class_model

    In statistics, a latent class model (LCM) is a model for clustering multivariate discrete data. It assumes that the data arise from a mixture of discrete distributions, within each of which the variables are independent. It is called a latent class model because the class to which each data point belongs is unobserved, or latent.

  9. Latent variable model - Wikipedia

    en.wikipedia.org/wiki/Latent_variable_model

    A latent variable model is a statistical model that relates a set of observable variables (also called manifest variables or indicators) [1] to a set of latent variables. Latent variable models are applied across a wide range of fields such as biology, computer science, and social science. [ 2 ]