enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Taylor series are used to define functions and "operators" in diverse areas of mathematics. In particular, this is true in areas where the classical definitions of functions break down. For example, using Taylor series, one may extend analytic functions to sets of matrices and operators, such as the matrix exponential or matrix logarithm.

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [ 3 ] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis .

  4. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.

  5. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]

  6. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    (), where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x , and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has erfc ⁡ x = e − x 2 x π ∑ n = 0 N − 1 ( − 1 ) n ( 2 n − 1 ) ! !

  7. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    Analytic functions of several variables have some of the same properties as analytic functions of one variable. However, especially for complex analytic functions, new and interesting phenomena show up in 2 or more complex dimensions: Zero sets of complex analytic functions in more than one variable are never discrete.

  8. Deformation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(mathematics)

    We could also interpret this equation as the first two terms of the Taylor expansion of the monomial. Infinitesimals can be made rigorous using nilpotent elements in local artin algebras. In the ring k [ y ] / ( y 2 ) {\displaystyle k[y]/(y^{2})} we see that arguments with infinitesimals can work.

  9. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Suppose z is defined as a function of w by an equation of the form = where f is analytic at a point a and ′ Then it is possible to invert or solve the equation for w, expressing it in the form = given by a power series [1]