Search results
Results from the WOW.Com Content Network
Operator overloading has often been criticized [2] because it allows programmers to reassign the semantics of operators depending on the types of their operands. For example, the use of the << operator in C++ a << b shifts the bits in the variable a left by b bits if a and b are of an integer type, but if a is an output stream then the above ...
In object-oriented programming, an indexer allows instances of a particular class or struct to be indexed just like arrays. [1] It is a form of operator overloading . Implementations
The previous section notwithstanding, there are other ways in which ad hoc polymorphism can work out. Consider for example the Smalltalk language. In Smalltalk, the overloading is done at run time, as the methods ("function implementation") for each overloaded message ("overloaded function") are resolved when they are about to be executed.
For example, to have a derived class with an overloaded function taking a double or an int, using the function taking an int from the base class, in C++, one would write: class B { public : void F ( int i ); }; class D : public B { public : using B :: F ; void F ( double d ); };
In languages that support operator overloading by the programmer (such as C++) but have a limited set of operators, operator overloading is often used to define customized uses for operators. In the example IF ORDER_DATE > "12/31/2011" AND ORDER_DATE < "01/01/2013" THEN CONTINUE ELSE STOP, the operators are: > (greater than), AND and < (less than).
It does not denote "of type" as in mathematics and elsewhere in this article; in Haskell that "of type" operator is written :: instead.) Type inference on the map function proceeds as follows. map is a function of two arguments, so its type is constrained to be of the form a -> b -> c .
Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of its arguments. [1]
Often the compiler selects the overload to call based on the type of the input arguments or it fails if the input arguments do not select an overload. Older and weakly-typed languages generally do not support overloading. Here is an example of overloading in C++, two functions Area that accept different types: