Ad
related to: mechanics of materials overview
Search results
Results from the WOW.Com Content Network
A solid is a material that can support a substantial amount of shearing force over a given time scale during a natural or industrial process or action. This is what distinguishes solids from fluids, because fluids also support normal forces which are those forces that are directed perpendicular to the material plane across from which they act and normal stress is the normal force per unit area ...
In the mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation.The field of strength of materials deals with forces and deformations that result from their acting on a material.
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
Continuum mechanics deals with the behavior of materials that can be approximated as continuous for certain length and time scales. The equations that govern the mechanics of such materials include the balance laws for mass, momentum, and energy. Kinematic relations and constitutive equations are needed to complete the system of governing ...
A diamond cuboctahedron showing seven crystallographic planes, imaged with scanning electron microscopy Six classes of conventional engineering materials. Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and ...
In materials science, creep (sometimes called cold flow) is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses.It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material.
Most methods in micromechanics of materials are based on continuum mechanics rather than on atomistic approaches such as nanomechanics or molecular dynamics. In addition to the mechanical responses of inhomogeneous materials, their thermal conduction behavior and related problems can be studied with analytical and numerical continuum methods ...
Structural mechanics analysis needs input data such as structural loads, the structure's geometric representation and support conditions, and the materials' properties. Output quantities may include support reactions, stresses and displacements. Advanced structural mechanics may include the effects of stability and non-linear behaviors.
Ad
related to: mechanics of materials overview