Search results
Results from the WOW.Com Content Network
sort is a generic function in the C++ Standard Library for doing comparison sorting.The function originated in the Standard Template Library (STL).. The specific sorting algorithm is not mandated by the language standard and may vary across implementations, but the worst-case asymptotic complexity of the function is specified: a call to sort must perform no more than O(N log N) comparisons ...
Selection sort is not difficult to analyze compared to other sorting algorithms, since none of the loops depend on the data in the array. Selecting the minimum requires scanning n {\displaystyle n} elements (taking n − 1 {\displaystyle n-1} comparisons) and then swapping it into the first position.
Sorting small arrays optimally (in the fewest comparisons and swaps) or fast (i.e. taking into account machine-specific details) is still an open research problem, with solutions only known for very small arrays (<20 elements). Similarly optimal (by various definitions) sorting on a parallel machine is an open research topic.
The average case is also quadratic, [4] which makes insertion sort impractical for sorting large arrays. However, insertion sort is one of the fastest algorithms for sorting very small arrays, even faster than quicksort; indeed, good quicksort implementations use insertion sort for arrays smaller than a certain threshold, also when arising as ...
Introsort or introspective sort is a hybrid sorting algorithm that provides both fast average performance and (asymptotically) optimal worst-case performance. It begins with quicksort, it switches to heapsort when the recursion depth exceeds a level based on (the logarithm of) the number of elements being sorted and it switches to insertion sort when the number of elements is below some threshold.
The next pass, 3-sorting, performs insertion sort on the three subarrays (a 1, a 4, a 7, a 10), (a 2, a 5, a 8, a 11), (a 3, a 6, a 9, a 12). The last pass, 1-sorting, is an ordinary insertion sort of the entire array (a 1,..., a 12). As the example illustrates, the subarrays that Shellsort operates on are initially short; later they are longer ...
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...
In computer science, merge sort (also commonly spelled as mergesort and as merge-sort [2]) is an efficient, general-purpose, and comparison-based sorting algorithm.Most implementations produce a stable sort, which means that the relative order of equal elements is the same in the input and output.