enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Any set of m integers, no two of which are congruent modulo m, is called a complete residue system modulo m. The least residue system is a complete residue system, and a complete residue system is simply a set containing precisely one representative of each residue class modulo m. [4] For example, the least residue system modulo 4 is {0, 1, 2, 3}.

  4. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverses are used to obtain a solution of a system of linear congruences that is guaranteed by the Chinese Remainder Theorem. For example, the system X ≡ 4 (mod 5) X ≡ 4 (mod 7) X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by

  5. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  6. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Hence another name is the group of primitive residue classes modulo n. In the theory of rings , a branch of abstract algebra , it is described as the group of units of the ring of integers modulo n .

  7. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.

  8. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    Perl, Python (only modern versions) choose the remainder with the same sign as the divisor d. [6] Scheme offer two functions, remainder and modulo – Ada and PL/I have mod and rem, while Fortran has mod and modulo; in each case, the former agrees in sign with the dividend, and the latter with the divisor.

  9. Template:Modulo/sandbox - Wikipedia

    en.wikipedia.org/wiki/Template:Modulo/sandbox

    Implements the mathematical modulo operator. The returned result is always of the same sign as the modulus or nul, and its absolute value is lower than the absolute value of the modulus . However, this template returns 0 if the modulus is nul (this template should never return a division by zero error).