Search results
Results from the WOW.Com Content Network
D. G. Champernowne built a Markov chain model of the distribution of income in 1953. [86] Herbert A. Simon and co-author Charles Bonini used a Markov chain model to derive a stationary Yule distribution of firm sizes. [87] Louis Bachelier was the first to observe that stock prices followed a random walk. [88]
A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol.
A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.
The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.
Markov chains with generator matrices or block matrices of this form are called M/G/1 type Markov chains, [13] a term coined by Marcel F. Neuts. [ 14 ] [ 15 ] An M/G/1 queue has a stationary distribution if and only if the traffic intensity ρ = λ E ( G ) {\displaystyle \rho =\lambda \mathbb {E} (G)} is less than 1, in which case the unique ...
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]