Search results
Results from the WOW.Com Content Network
scikit-image (formerly scikits.image) is an open-source image processing library for the Python programming language. [2] It includes algorithms for segmentation , geometric transformations, color space manipulation, analysis, filtering, morphology, feature detection , and more. [ 3 ]
Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s, at Bell Laboratories, the Jet Propulsion Laboratory, Massachusetts Institute of Technology, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone ...
OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel, it was later supported by Willow Garage, then Itseez (which was later acquired by Intel [3]).
Python Imaging Library is a free and open-source additional library for the Python programming language that adds support for opening, manipulating, and saving many different image file formats. It is available for Windows, Mac OS X and Linux. The latest version of PIL is 1.1.7, was released in September 2009 and supports Python 1.5.2–2.7. [3]
image, label classification 2010 [2] NIST 80 Million Tiny Images: 80 million 32×32 images labelled with 75,062 non-abstract nouns. 80,000,000 image, label 2008 [3] Torralba et al. JFT-300M Dataset internal to Google Research. 300M images with 375M labels in 18291 categories 300,000,000 image, label 2017 [4] Google Research Places
An ISRO technician next to a working model of the solid-state television set, designed with NASA assistance, for use in SITE. Image courtesy NASA. Satellite Instructional Television Experiment or SITE was an experimental satellite communications project launched in India in 1975, designed jointly by NASA and the Indian Space Research Organization (ISRO).
Its primary use is to execute algorithms for processing multiple images at a time, incorporating various algorithmic and parameter variations. The program determines a suitable algorithm for pre-processing, segmenting, and post-processing a set of images for a specific application to distinguish crucial regions of interest within the image.
Image registration or image alignment algorithms can be classified into intensity-based and feature-based. [3] One of the images is referred to as the moving or source and the others are referred to as the target, fixed or sensed images. Image registration involves spatially transforming the source/moving image(s) to align with the target image.