enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relevance feedback - Wikipedia

    en.wikipedia.org/wiki/Relevance_feedback

    Relevance feedback is a feature of some information retrieval systems. The idea behind relevance feedback is to take the results that are initially returned from a given query, to gather user feedback, and to use information about whether or not those results are relevant to perform a new query. We can usefully distinguish between three types ...

  3. Query expansion - Wikipedia

    en.wikipedia.org/wiki/Query_expansion

    Machine learning based query term weight and synonym analyzer for query expansion. LucQE - open-source, Java. Provides a framework along with several implementations that allow to perform query expansion with the use of Apache Lucene. Xapian is an open-source search library which includes support for query expansion; ReQue open-source, Python ...

  4. Rocchio algorithm - Wikipedia

    en.wikipedia.org/wiki/Rocchio_algorithm

    The Rocchio algorithm is based on a method of relevance feedback found in information retrieval systems which stemmed from the SMART Information Retrieval System developed between 1960 and 1964. Like many other retrieval systems, the Rocchio algorithm was developed using the vector space model .

  5. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    The most important factor in determining a system's effectiveness for users is the overall relevance of results retrieved in response to a query. [1] The success of an IR system may be judged by a range of criteria including relevance, speed, user satisfaction, usability, efficiency and reliability. [2]

  6. Extended Boolean model - Wikipedia

    en.wikipedia.org/wiki/Extended_Boolean_model

    We can generalize the previous 2D extended Boolean model example to higher t-dimensional space using Euclidean distances. This can be done using P-norms which extends the notion of distance to include p-distances, where 1 ≤ p ≤ ∞ is a new parameter.

  7. Discounted cumulative gain - Wikipedia

    en.wikipedia.org/wiki/Discounted_cumulative_gain

    Presented with a list of documents in response to a search query, an experiment participant is asked to judge the relevance of each document to the query. Each document is to be judged on a scale of 0-3 with 0 meaning not relevant, 3 meaning highly relevant, and 1 and 2 meaning "somewhere in between".

  8. Relevance (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Relevance_(information...

    A measure called "maximal marginal relevance" (MMR) has been proposed to manage this shortcoming. It considers the relevance of each document only in terms of how much new information it brings given the previous results. [13] In some cases, a query may have an ambiguous interpretation, or a variety of potential responses.

  9. Ranking (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Ranking_(information...

    Ranking of query is one of the fundamental problems in information retrieval (IR), [1] the scientific/engineering discipline behind search engines. [2] Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user.

  1. Related searches relevance feedback and query expansion in c pdf free deitel c++ pdf free download

    relevance feedback wikipediawhat is relevance feedback