Search results
Results from the WOW.Com Content Network
Relevance feedback is a feature of some information retrieval systems. The idea behind relevance feedback is to take the results that are initially returned from a given query, to gather user feedback, and to use information about whether or not those results are relevant to perform a new query. We can usefully distinguish between three types ...
Machine learning based query term weight and synonym analyzer for query expansion. LucQE - open-source, Java. Provides a framework along with several implementations that allow to perform query expansion with the use of Apache Lucene. Xapian is an open-source search library which includes support for query expansion; ReQue open-source, Python ...
The Rocchio algorithm is based on a method of relevance feedback found in information retrieval systems which stemmed from the SMART Information Retrieval System developed between 1960 and 1964. Like many other retrieval systems, the Rocchio algorithm was developed using the vector space model .
The most important factor in determining a system's effectiveness for users is the overall relevance of results retrieved in response to a query. [1] The success of an IR system may be judged by a range of criteria including relevance, speed, user satisfaction, usability, efficiency and reliability. [2]
We can generalize the previous 2D extended Boolean model example to higher t-dimensional space using Euclidean distances. This can be done using P-norms which extends the notion of distance to include p-distances, where 1 ≤ p ≤ ∞ is a new parameter.
Presented with a list of documents in response to a search query, an experiment participant is asked to judge the relevance of each document to the query. Each document is to be judged on a scale of 0-3 with 0 meaning not relevant, 3 meaning highly relevant, and 1 and 2 meaning "somewhere in between".
A measure called "maximal marginal relevance" (MMR) has been proposed to manage this shortcoming. It considers the relevance of each document only in terms of how much new information it brings given the previous results. [13] In some cases, a query may have an ambiguous interpretation, or a variety of potential responses.
Ranking of query is one of the fundamental problems in information retrieval (IR), [1] the scientific/engineering discipline behind search engines. [2] Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user.