Search results
Results from the WOW.Com Content Network
In determining melting points of a refractory substance by this method, it is necessary to either have black body conditions or to know the emissivity of the material being measured. The containment of the high melting material in the liquid state may introduce experimental difficulties. Melting temperatures of some refractory metals have thus ...
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1.
Refractory metals have high melting points, with tungsten and rhenium the highest of all elements, and the other's melting points only exceeded by osmium and iridium, and the sublimation of carbon. These high melting points define most of their applications. All the metals are body-centered cubic except rhenium which is hexagonal close-packed.
This point may be accurately determined by pressing the thermometer into melting snow. 0,1,2: the heats of air in winter 2,3,4: the heats of air in spring and autumn 4,5,6: the heat of air in summer 6: the heat at midday about the month of July 12: 1: the greatest heat which a thermometer takes up when in contact with the human body 14: 1 + 1 ⁄ 4
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
The solidus temperature specifies the temperature below which a material is completely solid, [2] and the minimum temperature at which a melt can co-exist with crystals in thermodynamic equilibrium. Liquidus and solidus are mostly used for impure substances (mixtures) such as glasses , metal alloys , ceramics , rocks , and minerals .
Newton did not originally state his law in the above form in 1701. Rather, using today's terms, Newton noted after some mathematical manipulation that the rate of temperature change of a body is proportional to the difference in temperatures between the body and its surroundings. This final simplest version of the law, given by Newton himself ...