enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The dot product of two unit vectors behaves just oppositely: it is zero when the unit vectors are perpendicular and 1 if the unit vectors are parallel. Unit vectors enable two convenient identities: the dot product of two unit vectors yields the cosine (which may be positive or negative) of the angle between the two unit vectors.

  3. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  4. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    When vectors are represented by column vectors, the dot product can be expressed as a matrix product involving a conjugate transpose, denoted with the superscript H: =. In the case of vectors with real components, this definition is the same as in the real case.

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation

  8. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    The cross product or vector product is a binary operation on two vectors in three-dimensional space and is denoted by the symbol ×. The cross product A × B of the vectors A and B is a vector that is perpendicular to both and therefore normal to the plane containing them.

  9. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The formalism of dyadic algebra is an extension of vector algebra to include the dyadic product of vectors. The dyadic product is also associative with the dot and cross products with other vectors, which allows the dot, cross, and dyadic products to be combined to obtain other scalars, vectors, or dyadics.