Search results
Results from the WOW.Com Content Network
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...
50 psi Water pressure of a garden hose [58] 300 to 700 kPa 50–100 psi Typical water pressure of a municipal water supply in the US [59] 358 to 524 kPa: 52-76 psi Threshold of pain for objects outside the human body hitting it [60] 400 to 600 kPa 60–90 psi Carbon dioxide pressure in a champagne bottle [61] 520 kPa 75 psi
In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor.
Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³ STP /min. Another expression of it would be Nml/min.
The unit used in the US is the foot sea water (fsw), based on standard gravity and a sea-water density of 64 lb/ft 3. According to the US Navy Diving Manual, one fsw equals 0.30643 msw, 0.030 643 bar, or 0.444 44 psi, [1] [2] though elsewhere it states that 33 fsw is 14.7 psi (one atmosphere), which gives one fsw equal to about 0.445 psi. [3]
It is defined as the pressure exerted by a column of water of 1 inch in height at defined conditions. At a temperature of 4 °C (39.2 °F) pure water has its highest density (1000 kg/m 3). At that temperature and assuming the standard acceleration of gravity, 1 inAq is approximately 249.082 pascals (0.0361263 psi). [2]
V m = 10.7316 × 519.67 / 14.696 = 379.48 ft 3 /lbmol at 60 °F and 14.696 psi (or about 0.8366 ft 3 /gram mole) V m = 10.7316 × 519.67 / 14.730 = 378.61 ft 3 /lbmol at 60 °F and 14.73 psi; Technical literature can be confusing because many authors fail to explain whether they are using the ideal gas constant R, or the specific gas constant R s.
This means that a much shorter column is needed compared to water. [2] For instance, the pressure represented by a column of 100 mm of water is just under 7.4 mm of mercury . [3] The pressure is determined by measuring the difference in height between the reference column and the column connected to the item under test.