Search results
Results from the WOW.Com Content Network
In solid-state physics, metal-induced gap states are electron states that exist near the surface of a semiconductor due to the presence of a metal on the surface. They have energies that fall within the semiconductor's bandgap thus are forbidden in the bulk of the semiconductor.
The oligodynamic effect (from Greek oligos, "few", and dynamis, "force") is a biocidal effect of metals, especially heavy metals, that occurs even in low concentrations. This effect is attributed to the antibacterial behavior of metal ions, which are absorbed by bacteria upon contact and damage their cell membranes .
The nature of these metal-induced gap states and their occupation by electrons tends to pin the center of the band gap to the Fermi level, an effect known as Fermi level pinning. Thus the heights of the Schottky barriers in metal–semiconductor contacts often show little dependence on the value of the semiconductor or metal work functions, in ...
This model includes a dipole layer at the interface between the two semiconductors which arises from electron tunneling from the conduction band of one material into the gap of the other (analogous to metal-induced gap states). This model agrees well with systems where both materials are closely lattice matched [11] such as GaAs/AlGaAs.
The shade follows the Fermi–Dirac distribution (black: all states filled, white: no state filled). In metals and semimetals the Fermi level E F lies inside at least one band. In insulators and semiconductors the Fermi level is inside a band gap ; however, in semiconductors the bands are near enough to the Fermi level to be thermally populated ...
Metals are also toxic so a balance must be acquired to regulate where the metals are in an organism as well as in what quantities. Many organisms have flexible systems in which they can exchange one metal for another if one is scarce. Metals in this discussion are naturally occurring elements that have a tendency to undergo oxidation. Vanadium ...
In solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices , such as photodiodes , light ...
In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems.Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal (cationic or neutral), an anion, another molecule and even another π system. [1]