Search results
Results from the WOW.Com Content Network
The above -sphere exists in (+) -dimensional Euclidean space and is an example of an -manifold. The volume form ω {\displaystyle \omega } of an n {\displaystyle n} -sphere of radius r {\displaystyle r} is given by
where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...
The n-dimensional unit sphere — called the n-sphere for brevity, and denoted as S n — generalizes the familiar circle (S 1) and the ordinary sphere (S 2). The n-sphere may be defined geometrically as the set of points in a Euclidean space of dimension n + 1 located at a unit distance from the origin.
The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.
The n-dimensional model is the celestial sphere of the (n + 2)-dimensional Lorentzian space R n+1,1. Here the model is a Klein geometry : a homogeneous space G / H where G = SO( n + 1, 1) acting on the ( n + 2) -dimensional Lorentzian space R n +1,1 and H is the isotropy group of a fixed null ray in the light cone .
S 3: a 3-sphere is a sphere in 4-dimensional Euclidean space. Spheres for n > 2 are sometimes called hyperspheres. The n-sphere of unit radius centered at the origin is denoted S n and is often referred to as "the" n-sphere. The ordinary sphere is a 2-sphere, because it is a 2-dimensional surface which is embedded in 3-dimensional space.
In mathematics, a space form is a complete Riemannian manifold M of constant sectional curvature K. The three most fundamental examples are Euclidean n -space , the n -dimensional sphere , and hyperbolic space , although a space form need not be simply connected .
A straight line in the plane is an obvious example of isoparametric manifold. Any affine subspace of the Euclidean n-dimensional space is also an example since the principal curvatures of any shape operator are zero. Another simplest example of an isoparametric manifold is a sphere in Euclidean space. Another example is as follows.