Search results
Results from the WOW.Com Content Network
A non-negative integer is a square number when its square root is again an integer. For example, =, so 9 is a square number. A positive integer that has no square divisors except 1 is called square-free. For a non-negative integer n, the n th square number is n 2, with 0 2 = 0 being the zeroth one. The concept of square can be extended to some ...
To divide a given square into a sum of two squares. To divide 16 into a sum of two squares. Let the first summand be , and thus the second . The latter is to be a square. I form the square of the difference of an arbitrary multiple of x diminished by the root [of] 16, that is, diminished by 4.
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...
In mathematics, in the field of number theory, the Ramanujan–Nagell equation is an equation between a square number and a number that is seven less than a power of two.It is an example of an exponential Diophantine equation, an equation to be solved in integers where one of the variables appears as an exponent.
How to Solve It suggests the following steps when solving a mathematical problem: First, you have to understand the problem. [2] After understanding, make a plan. [3] Carry out the plan. [4] Look back on your work. [5] How could it be better?
The number of representable numbers in the range from 0 to any number is proportional to , with a limiting constant of proportionality given by the Landau–Ramanujan constant, approximately 0.764. [3] The product of any two representable numbers is another representable number.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
Other magic triangles use Triangular number or square number of vertices to form magic figure. Matthew Wright and his students in St. Olaf College developed magic triangles with square numbers. In their magic triangles, the sum of the k-th row and the (n-k+1)-th row is same for all k.