Search results
Results from the WOW.Com Content Network
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t , sin t ) form a circle with a unit radius , the points (cosh t , sinh t ) form the right half of the unit hyperbola .
A scientific calculator is an electronic calculator, either desktop or handheld, designed to perform calculations using basic (addition, subtraction, multiplication, division) and advanced (trigonometric, hyperbolic, etc.) mathematical operations and functions.
An unusual feature of the SR-50 was that its included functions like factorial and hyperbolic trig functions, which were found on very few calculators (including the HP-35 and HP-45) at the time. The user invoked the hyperbolic functions by entering the function argument and then pressing the "hyp" key, followed by the "sin", "cos", or "tan ...
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
The argument to the hyperbolic functions is a hyperbolic angle measure. In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant ...
The Casio FX-7000G is a calculator which is widely known as being the world's first graphing calculator available to the public. It was introduced to the public and later manufactured between 1985 and c. 1988. [2] Notable features are its ability to graph functions, [3] and that it is programmable.
Hyperbolic angle is used as the independent variable for the hyperbolic functions sinh, cosh, and tanh, because these functions may be premised on hyperbolic analogies to the corresponding circular (trigonometric) functions by regarding a hyperbolic angle as defining a hyperbolic triangle.
Instead of +∞ and −∞, we have only one ∞, at both ends of the real line. That is often appropriate when dealing with rational functions and with trigonometric functions. (This is the one-point compactification of the line.) As x varies, the point (cos x, sin x) winds repeatedly around the unit circle centered at (0, 0). The point