Search results
Results from the WOW.Com Content Network
Neural mesenchyme soon undergoes a mesenchymal–epithelial transition under the influence of WNT6 produced by ectoderm to form somites. [20] These structures will undergo a secondary EMT as the somite tissue migrates later in development to form structural connective tissue such as cartilage and skeletal muscle. [21]
Intermediate mesoderm or intermediate mesenchyme is a narrow section of the mesoderm (one of the three primary germ layers) located between the paraxial mesoderm and the lateral plate of the developing embryo. [1] The intermediate mesoderm develops into vital parts of the urogenital system (kidneys, gonads and respective tracts).
The cells in this tissue express E-cadherin and apical-basal polarity. [33] Since gastrulation is a very rapid process, E-cadherin is repressed transcriptionally by Twist and SNAI1 (commonly called Snail), and at the protein level by P38 interacting protein. The primitive streak, through invagination, further generates mesoendoderm, which ...
Surrounding structures such as the notochord, neural tube, epidermis and lateral plate mesoderm send signals for somite differentiation [1] [2] Notochord protein accumulates in presomitic mesoderm destined to form the next somite and then decreases as that somite is established. The notochord and the neural tube activate the protein SHH, which ...
These experiments reveal that the limb mesenchyme contains the necessary information concerning limb identity, but the AER is needed to stimulate the mesenchyme to live up to its destiny (of becoming an arm, leg, etc.) When the AER is removed, limb development halts. If an FGF-bead is added in the AER's place, normal limb development proceeds.
Mesenchyme is embryonic connective tissue that is derived from the mesoderm and that differentiates into hematopoietic and connective tissue, whereas MSCs do not differentiate into hematopoietic cells. [7] Stromal cells are connective tissue cells that form the supportive structure in which the functional cells of the tissue reside. While this ...
Somitogenesis is the process by which somites form. Somites are bilaterally paired blocks of paraxial mesoderm that form along the anterior-posterior axis of the developing embryo in segmented animals. In vertebrates, somites give rise to skeletal muscle, cartilage, tendons, endothelium, and dermis.
In embryogenesis, the skeletal system is derived from the mesoderm and ectoderm germ layers. Chondrification (also known as chondrogenesis) is the process by which cartilage is formed from condensed mesenchyme tissue, [2] which differentiates into chondrocytes and begins secreting the molecules that form the extracellular matrix.