Search results
Results from the WOW.Com Content Network
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...
If other functional groups are present, the chain is numbered such that the aldehyde carbon is in the "1" position, unless functional groups of higher precedence are present. If a prefix form is required, "oxo-" is used (as for ketones), with the position number indicating the end of a chain: CHOCH 2 COOH is 3-oxopropanoic acid.
Formyl functional group is shown in blue. Formylation refers to any chemical processes in which a compound is functionalized with a formyl group (-CH=O). In organic chemistry, the term is most commonly used with regards to aromatic compounds (for example the conversion of benzene to benzaldehyde in the Gattermann–Koch reaction).
In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl (C=O) functional group by formaldehyde (H−CHO) and a primary or secondary amine (−NH 2) or ammonia (NH 3). [1] The final product is a β-amino-carbonyl compound also known as a Mannich base.
Schiff bases are imines in which R 3 is an alkyl or aryl group (not a hydrogen). R 1 and R 2 may be hydrogens General structure of an azomethine compound. In organic chemistry, a Schiff base (named after Hugo Schiff) is a compound with the general structure R 1 R 2 C=NR 3 (R 3 = alkyl or aryl, but not hydrogen).
It has an aldehyde group attached to the 2-position of furan. It is a product of the dehydration of sugars, as occurs in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. The name furfural comes from the Latin word furfur, meaning bran, referring to its usual source. Furfural is derived only from dried biomass.
Organic molecules with more than one functional group can be a source of confusion. Generally the functional group responsible for the name or type of the molecule is the 'reference' group for purposes of carbon-atom naming. For example, the molecules nitrostyrene and phenethylamine are quite similar; the former can even be reduced into the latter.
An aldehyde is either a functional group consisting of a terminal carbonyl group, or a compound containing a terminal carbonyl group. (Where -R represents the carbon chain.) Subcategories