enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniformly convex space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_convex_space

    The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...

  3. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    A uniformly convex function, [16] [17] with modulus , is a function that, for all , in the domain and [,], satisfies (+ ()) + () (‖ ‖) where is a function that is non-negative and vanishes only at 0.

  4. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  5. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    If f n converges to a mapping f uniformly, then f is also Lipschitz, with Lipschitz constant bounded by the same K. In particular, this implies that the set of real-valued functions on a compact metric space with a particular bound for the Lipschitz constant is a closed and convex subset of the Banach space of continuous functions

  6. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    Attempts to find classes of locally convex topological vector spaces on which the uniform boundedness principle holds eventually led to barrelled spaces. That is, the least restrictive setting for the uniform boundedness principle is a barrelled space, where the following generalized version of the theorem holds (Bourbaki 1987, Theorem III.2.1):

  7. Modulus and characteristic of convexity - Wikipedia

    en.wikipedia.org/wiki/Modulus_and_characteristic...

    In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

  8. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The difference between uniform continuity and (ordinary) continuity is that, in uniform continuity there is a globally applicable (the size of a function domain interval over which function value differences are less than ) that depends on only , while in (ordinary) continuity there is a locally applicable that depends on both and . So uniform ...

  9. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    The above property for uniformly continuous function on convex domains admits a sort of converse at least in the case of real-valued functions: that is, every special uniformly continuous real-valued function f : X → R defined on a metric space X, which is a metric subspace of a normed space E, admits extensions over E that preserves any ...