enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    The numerical value of the mode is the same as that of the mean and median in a normal distribution, and it may be very different in highly skewed distributions. The mode is not necessarily unique in a given discrete distribution since the probability mass function may take the same maximum value at several points x 1 , x 2 , etc.

  3. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    Let and be respectively the cumulative probability distribution function and the probability density function of the ( , ) standard normal distribution, then we have that [2] [4] the probability density function of the log-normal distribution is given by:

  4. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Bates distribution is the distribution of the mean of n independent random variables, each of which having the uniform distribution on [0,1]. The logit-normal distribution on (0,1). The Dirac delta function , although not strictly a probability distribution, is a limiting form of many continuous probability functions.

  5. Median - Wikipedia

    en.wikipedia.org/wiki/Median

    The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode. The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean. The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter.

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().

  7. Unimodality - Wikipedia

    en.wikipedia.org/wiki/Unimodality

    where the median is ν, the mean is μ and ω is the root mean square deviation from the mode. It can be shown for a unimodal distribution that the median ν and the mean μ lie within (3/5) 1/2 ≈ 0.7746 standard deviations of each other. [11] In symbols, | |

  8. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    If the distribution is both symmetric and unimodal, then the mean = median = mode. This is the case of a coin toss or the series 1,2,3,4,... This is the case of a coin toss or the series 1,2,3,4,... Note, however, that the converse is not true in general, i.e. zero skewness (defined below) does not imply that the mean is equal to the median.

  9. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    The fit of a Weibull distribution to data can be visually assessed using a Weibull plot. [17] The Weibull plot is a plot of the empirical cumulative distribution function F ^ ( x ) {\displaystyle {\widehat {F}}(x)} of data on special axes in a type of Q–Q plot .