enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.

  3. Stone's theorem on one-parameter unitary groups - Wikipedia

    en.wikipedia.org/wiki/Stone's_theorem_on_one...

    The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().

  4. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    Even more general is the concept of adjoint operator for operators on (possibly infinite-dimensional) complex Hilbert spaces. All this is subsumed by the *-operations of C*-algebras . One may also define a conjugation for quaternions and split-quaternions : the conjugate of a + b i + c j + d k {\textstyle a+bi+cj+dk} is a − b i − c j − d ...

  5. Galois connection - Wikipedia

    en.wikipedia.org/wiki/Galois_connection

    Other terminology encountered here is left adjoint (respectively right adjoint) for the lower (respectively upper) adjoint. An essential property of a Galois connection is that an upper/lower adjoint of a Galois connection uniquely determines the other: F(a) is the least element ~ with a ≤ G(~), and G(b) is the largest element ~ with F(~) ≤ b.

  6. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N. [1] Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood.

  7. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    For a conjugate-linear operator the definition of adjoint needs to be adjusted in order to compensate for the complex conjugation. An adjoint operator of the conjugate-linear operator A on a complex Hilbert space H is an conjugate-linear operator A ∗ : H → H with the property:

  8. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    The adjoint of a densely defined unbounded operator is defined in essentially the same manner as for bounded operators. Self-adjoint unbounded operators play the role of the observables in the mathematical formulation of quantum mechanics. Examples of self-adjoint unbounded operators on the Hilbert space L 2 (R) are: [85]

  9. Extensions of symmetric operators - Wikipedia

    en.wikipedia.org/wiki/Extensions_of_symmetric...

    An operator that has a unique self-adjoint extension is said to be essentially self-adjoint; equivalently, an operator is essentially self-adjoint if its closure (the operator whose graph is the closure of the graph of ) is self-adjoint. In general, a symmetric operator could have many self-adjoint extensions or none at all.