Search results
Results from the WOW.Com Content Network
Concerning general linear maps, linear endomorphisms, and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other parts of mathematics.
This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the generalization of vector spaces through modules, see glossary of module theory
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
Some authors use "linear function" only for linear maps that take values in the scalar field; [6] these are more commonly called linear forms. The "linear functions" of calculus qualify as "linear maps" when (and only when) f(0, ..., 0) = 0, or, equivalently, when the constant b equals zero in the one-degree polynomial above. Geometrically, the ...
Linear systems are a fundamental part of linear algebra, a subject used in most modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics.
His 1966 text, Fundamentals of Linear Algebra [3] includes these words in the dedication, "It is my hope that this book will continue to serve those students of mathematics and science for whom a more than rudimentary background in linear algebra is an indispensable part of their training." When the book came out in a new edition in 1979 ...
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
The Steinitz exchange lemma is a basic theorem in linear algebra used, for example, to show that any two bases for a finite-dimensional vector space have the same number of elements. The result is named after the German mathematician Ernst Steinitz .