Search results
Results from the WOW.Com Content Network
A space M is a fine moduli space for the functor F if M represents F, i.e., there is a natural isomorphism τ : F → Hom(−, M), where Hom(−, M) is the functor of points. This implies that M carries a universal family; this family is the family on M corresponding to the identity map 1 M ∊ Hom(M, M).
This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms.It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology ...
Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, or Socrates in his reflections on what the Greeks called khôra (i.e. "space"), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e. place), or in the later "geometrical conception of place" as "space qua extension" in the ...
In mathematics, especially in geometry and topology, an ambient space is the space surrounding a mathematical object along with the object itself.
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.
Every space treated in Section "Types of spaces" above, except for "Non-commutative geometry", "Schemes" and "Topoi" subsections, is a set (the "principal base set" of the structure, according to Bourbaki) endowed with some additional structure; elements of the base set are usually called "points" of this space. In contrast, elements of (the ...
A metric space M is bounded if there is an r such that no pair of points in M is more than distance r apart. [b] The least such r is called the diameter of M. The space M is called precompact or totally bounded if for every r > 0 there is a finite cover of M by open balls of radius r. Every totally bounded space is bounded.
Geometry is the discipline devoted to the study of space and the rules relating the elements to each other. For example, in Euclidean space the Pythagorean theorem provides a rule to compute distances from Cartesian coordinates. In a two-dimensional space of constant curvature, like the surface of a sphere, the rule is somewhat more complex but ...